
Getting started with PSOC™ Control C3 MCU on
ModusToolbox™ software

About this document
Scope and purpose

This application note is to introduce the PSOC™ Control C3 MCU, which is a single-core, high-performance, low-
power, and secure MCU designed for real-time control, enhanced sensing, and secure and low-power
applications. This application note helps you to explore the PSOC™ Control C3 MCU architecture and
development tools and shows you how to create your first project using the Eclipse IDE for ModusToolbox™

software. This application note also guides you to more resources available online to accelerate your learning
about the PSOC™ Control C3 MCU.
Intended audience

This document is intended for the users who are new to PSOC™ Control C3 MCU and ModusToolbox™ software.
Associated part family

All PSOC™ Control C3 devices.
Software version

ModusToolbox™ software 3.3 or above.
More code examples? We heard you.

To access an ever-growing list of PSOC™ Control C3 code examples using ModusToolbox™, please visit the
GitHub site.

AN238329

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-38329 Rev. *A
www.infineon.com 2024-12-03

https://www.infineon.com/modustoolbox
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com

Table of contents

About this document . 1

Table of contents . 2

1 Introduction . 4
1.1 Architecture and product lines .4
1.2 PSOC™ Control C3 features . 7
1.3 Target applications . 9

2 PSOC™ Control C3 resources . 11

3 PSOC™ Control C3 MCU development kits . 12

4 PSOC™ Control C3 ecosystem for firmware/application development . 13
4.1 Installing the ModusToolbox™ tools package . 13
4.2 Choosing an IDE . 13
4.3 ModusToolbox™ help . 14

5 Getting started with PSOC™ Control C3 MCU design . 15
5.1 Prerequisites . 15
5.1.1 Hardware .15
5.1.2 Software . 15
5.2 Application development instructions . 15
5.3 About the design . 15
5.4 Create a new application . 15
5.4.1 Eclipse IDE for ModusToolbox™ .16
5.4.1.1 View and modify the design . 19
5.4.1.1.1 Open the Device Configurator . 21
5.4.1.1.2 Add retarget-io middleware . 24
5.4.1.2 Write firmware . 24
5.4.1.3 Build the application . 31
5.4.1.4 Program the device . 33
5.4.1.5 Test your design . 34
5.4.1.6 Debugging the application using KitProg3/MiniProg4 . 36
5.4.2 Visual Studio Code (VS Code) for ModusToolbox™ . 38
5.4.3 IAR Embedded Workbench for ModusToolbox™ . 38
5.4.4 Keil µVision for ModusToolbox™ . 39

6 Summary . 40

References .41

Glossary . 42

Revision history .43

Trademarks .44

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
Table of contents

Application note 2 002-38329 Rev. *A
2024-12-03

Disclaimer . 45

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
Table of contents

Application note 3 002-38329 Rev. *A
2024-12-03

1 Introduction
The PSOC™ Control C3 device is a microcontroller targeted at industrial applications. The PSOC™ Control C3
integrates the following features on a single chip:
• Single core 180 MHz 32-bit Arm® Cortex®-M33 CPU with

- Floating-point unit (FPU)
- DSP
- Memory protection unit (MPU)
- TrustZone framework support
- 16 KB I-cache

• Up to 256 KB Read-While-Write Flash with ECC support
• 64 KB ROM for boot code
• 64 KB SRAM with ECC support
• Industrial control peripherals: Coordinate rotation digital computer (CORDIC) and timer/counter pulse-

width modulator (TCPWM) supporting high-resolution pulse-width modulator (HRPWM)
• High-performance programmable analog subsystem (HPPASS): 12-bit, up to 12-Msps SAR ADC with parallel

idle sampling of up to 16 analog channels and five comparators with <10 ns, built-in 10-bit DAC, and slope
generator

• ModusToolbox™ development environment with installable SDKs and libraries, industry standard Arm®

tools, and RTOS support
This application note introduces you to the capabilities of the PSOC™ Control C3 MCU, gives an overview of the
development ecosystem, and gets you started with a simple 'Hello World' application wherein you learn to use
the PSOC™ Control C3 MCU. Additionally, it shows you how to create an application from an empty starter
application. The completed design of this application is available as a code example for ModusToolbox™ on
GitHub.
For hardware design considerations, see the Hardware design guide for the PSOC™ Control C3 MCU family.

1.1 Architecture and product lines
Figure 1 shows a detailed block diagram of the MCU.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 4 002-38329 Rev. *A
2024-12-03

https://github.com/Infineon/mtb-example-ce240510-hello-world
https://github.com/Infineon/mtb-example-ce240510-hello-world

CPU Subsystem

System Power Modes
Legend

In
te

rc
on

ne
ct

 (A
H

B)

Deep Sleep (-RAM, -OFF)
Hibernate

SRAM0 64 KB
(ECC)

System Resources
Power

LVD

Active LDO
Retention LDO

REF
POR/BOD

DeepSleep LDO

Clock

ILO ECO

2x DPLL

IHO WCO
IMO FLL

Reset
Reset ControlRTC

32 Registers

Backup

Sm
ar

tIO
 (2

8
I/O

s,
 5

6
LU

T)
GP

IO
 (5

0)

I/O
 M

at
rix

, B
ou

nd
ar

y
Sc

an

An
al

og
 (2

 x
 8

)

2x
8

2

HPPASS

SAR ADC
 [12-bit]

5x CSG

Temp
Sense

INFRA

DMA0
(16 ch)

DMA1
(16 ch)

IPC
(4 ch)

ROM 64 KB

Flash 256 KB
(ECC)

Backup

IO Subsystem

Active/Sleep (ULP, MF, LP, OD)

GPIOIO Subsystem

CryptoLite (TRNG, VU, SHA-256, AES-128)

1x SCB (fast SPI)
(master/slave for I2C, SPI, UART, LIN, IrDA, 7816)

4

CAN FD
(2 ch)

CORDIC

LPComp (2 ch)

2x TCPWM 16-bit (8 ch)
1x MOTIF

1x TCPWM 32-bit (4 ch)
HRPWM

4x SCB
(master/slave for I2C, SPI, UART, LIN, IrDA, 7816)

SFlash 32 KB

Cortex®-M33
180 MHz

16KB I-Cache

Debug and trace

SWJ,ITM,CTI
TZ,DSP,FPUWIC

WDT MCWDT

Sleep Control Clock Control

1x SCB (Deep Sleep slave for I2C, SPI)
(master/slave for I2C, SPI, UART, LIN, IrDA, 7816)

Figure 1 Functional block diagram

There are four variants in the PSOC™ Control C3 MCU. Table 1 provides an overview of different product lines.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 5 002-38329 Rev. *A
2024-12-03

Table 1 PSOC™ Control C3 MCU product lines

Product line Device series Details

Entry line PSC3P2x Single-core 100 MHz Arm® Cortex®-M33, up to 256 KB flash and 64 KB RAM,
12-channel 6 Msps ADC

PSC3M3x Single-core 100 MHz Arm® Cortex®-M33, up to 256 KB flash and 64 KB RAM,
12-channel 6 Msps ADC, CORDIC, MOTIF

Main line PSC3P5x Single-core 180 MHz Arm® Cortex®-M33, up to 256 KB flash and 64 KB RAM,
12-channel 12 Msps ADC

PSC3M5x Single-core 180 MHz Arm® Cortex®-M33, up to 256 KB flash and 64 KB RAM,
12-channel 12 Msps ADC, CORDIC, MOTIF

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 6 002-38329 Rev. *A
2024-12-03

1.2 PSOC™ Control C3 features
PSOC™ Control C3 MCUs have extensive features as shown in Figure 1. The following is a list of major features.
For more information, see the device datasheet, reference manuals, and References section.
• CPU subsystem

- Arm® Cortex®-M33 running up to 180 MHz
- Digital signal processor (DSP), floating-point unit (FPU), memory protection unit (MPU), 16 KB I-cache
- Two direct memory access (DMA) controllers with 16 channels each
- Security

- Platform security architecture level 2 (PSA L2) certified
- Step-wise authentication of execution images until the control is handed over to the user code
- Secure execution of code in the execute-only mode for protected routines
- Image authentication and integrity check
- TrustZone framework that establishes an isolated device root of trust (RoT) for trust attestation

and software management
• Memory

- On-chip flash with ECC support
- Up to 256-KB flash with read while write (RWW) capability, 64 KB ROM for boot code, and

bootloader functions
- Built-in device firmware upgrade (DFU) support in boot ROM via serial interface (UART/I2C/SPI)

- SRAM with ECC support
- 64 KB full SRAM available in Deep Sleep

- SRAM data path is protected with a hardware mechanism (ECC) for soft error detection and
correction

• Clocking subsystem
- 8 MHz IMO with Deep Sleep operation offering ±2% accuracy
- 48 MHz internal high-frequency oscillator (IHO) offering ±1% accuracy
- 32 kHz internal low frequency oscillator (ILO) offering ±10% accuracy
- 4 to 35 MHz external crystal oscillator (ECO) support
- 32.768 kHz external watch crystal oscillator (WCO) usable for real-time clock (RTC)
- External clock (EXTCLK): Maximum frequency 80 MHz
- One frequency lock loop (FLL) with 24-100 MHz output range
- Two digital phase-locked loops, DPLL#0 and DPLL#1, with 25-250 MHz output range

• Low power (1.71 V to 3.6 V) operation
- Six power modes (Active, Sleep, Deep Sleep, Deep Sleep-RAM, Deep Sleep-OFF, and Hibernate) for

fine-grained power management
- Deep Sleep mode current of 11 µA at 3.3-V external supply using an internal voltage regulator with

64-KB SRAM retention, LPComp, and Deep Sleep SCB
- Hibernate mode current with RTC and LPComp of up to 1000 nA

• Communication peripherals
- Serial communication blocks (SCBs)

- Up to six independent run-time-reconfigurable SCBs; each is software-configurable as I2C, SPI, or
UART in master or slave mode

- One SCB also supports Deep Sleep operation and wake-up from Deep Sleep in I2C slave and SPI
slave modes

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 7 002-38329 Rev. *A
2024-12-03

- One SCB has fast SPI support of up to 50 MHz
- SCB supports single-wire half-duplex mode for UART

- CAN FD
- Up to two CAN FD channels with a single instance with operation of up to 8 Mbps

• High-performance, programmable analog subsystem (HPPASS)
- Analog-to-digital converter (ADC)

- One 12-bit, 12-Msps SAR ADC
- Up to 16 dedicated analog pads, connected to up to 16 parallel sample stages
- Two additional GPIOs can be used as analog inputs
- Up to 16 sample/hold (S/H) circuits in SAR ADC connected to pins directly or through AMUX
- One S/H circuit in SAR ADC is internally connected to analog references and a temperature sensor
- Configurable input gain of 1, 3, 6, and 12 on all 16 S/H circuits
- Digital comparator at the output to compare the ADC result against programmed boundary values
- Digital comparator outputs can be connected to timer/counter pulse-width modulator (TCPWM)

(low latency between the modules)
- Analog comparators

- Five Active comparators without Deep Sleep functionality, each with a 10-bit DAC to generate the
comparator reference

- Each comparator supports an external reference/threshold through pins
- Active comparator can be used with the built-in DAC in Hysteresis mode
- Two additional comparators in LPComp are available in Active/Deep Sleep/Hibernate modes
- Comparator outputs can be brought to pins for control loop applications
- Comparator outputs can be connected to TCPWM (low latency between the modules)
- Logical OR of multiple comparator trigger outputs connected as an input trigger to TCPWM via

trigger MUX
• Real-time control peripherals

- Coordinate rotation digital computer (CORDIC)
- Supports all CORDIC operating modes for solving circular (trigonometric), hyperbolic functions,

and integrated independent lookup tables to accelerate calculation
- Timer/counter pulse-width modulator (TCPWM)

- Sixteen 16-bit TCPWM channels
- Four 32-bit TCPWM channels supporting high-resolution PWM generation (HRPWM) for PWM

outputs
- Center-aligned, edge, and pseudorandom modes
- Comparator-based triggering of kill signals
- Shadow update of duty, period, dead-time, output signal polarity, and dithering (pseudorandom

mode)
- Multichannel control: In a group of eight TCPWM channels, one channel within a group can trigger

another channel
- Ability to logically combine the outputs of multiple channels through Smart I/O
- Dedicated output triggers mux in a group to allow flexibility to the PWM channel as a trigger

and/or gate signals to the HPPASS
- Hall sensor interface with autonomous BLDC block commutation support

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 8 002-38329 Rev. *A
2024-12-03

- Quadrature encoder interface to decode motor speed and rotor position
- HRPWM feature for period, duty, and dead-time insertion with a typical resolution of less than 80

ps
• I/O subsystem

- Programmable GPIO pins
- Up to 66 functional pins (50 digital GPIOs; 2 out of 50 GPIOs can be used for analog inputs + 16

dedicated analog-only inputs)
- Programmable drive modes, strengths, and slew rates

- Programmable digital
- Up to seven Smart I/O capable ports (28 I/Os, 56 LUTs) enable Boolean operations on I/O signals

• Cryptography
- Cryptography accelerator

- Hardware acceleration for symmetric (AES-128) and asymmetric cryptographic algorithms (RSA
and elliptic curve cryptography (ECC)) supported by vector unit (VU) and hash functions (SHA-256)

- True random number generator (TRNG) function

1.3 Target applications
The versatile, secured, low-power, feature-rich offerings in the PSOC™ Control C3 MCU make it an ideal choice
for a wide variety of end applications. Some of these applications are listed below.
• Power tools
• Home appliances
• Industrial drives
• Light electric vehicles
• Switched-mode power supplies (SMPS)
• LED lighting
• Solar inverters
The ModusToolbox™ software environment supports PSOC™ Control C3 MCU application development with a set
of tools for configuring the device, setting up peripherals, and complementing your projects with world-class
middleware. See the Infineon GitHub repos for board support packages (BSPs) for all kits, libraries for popular
functionality like motor control and power stage converter, and a comprehensive array of example applications
to get you started.
Figure 2 shows an application-level block diagram for a real-world use case using PSOC™ Control C3 MCU.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 9 002-38329 Rev. *A
2024-12-03

https://www.infineon.com/cms/en/applications/consumer-electronics/power-tools/
https://www.infineon.com/cms/en/applications/home-appliances/
https://www.infineon.com/cms/en/applications/industrial/industrial-drives/
https://www.infineon.com/cms/en/applications/automotive/light-vehicles/
https://www.infineon.com/cms/en/applications/solutions/power-supplies/
https://www.infineon.com/cms/en/applications/industrial/lighting/
https://www.infineon.com/cms/en/applications/renewables/photovoltaic/
https://www.infineon.com/modustoolbox

PSOC™ Control C3 MCU

TCPWM

Arm®
Cortex® -M33

LPComp

256 KB Flash

64 KB SRAM

64 KB ROM

SCB

CAN FD

GPIO

Smart I/O
CORDIC

Secure Boot

UART/SPI/I2C
device

CAN device

LED/switch/
logic circuit

M

High-
performance,

programmable
analog

subsystem
(HPPASS)

Inverter
with PFC

Analog sensors

LED/switch/
logic circuit

Figure 2 Application-level block diagram using PSOC™ Control C3 MCU

PSOC™ Control C3 MCU is a highly capable and flexible solution for industrial applications. For example, the
real-world use case in the Figure 2 takes advantage of the following features:
• TCPWM to drive the gates in the motor inverter and the power factor correction (PFC) circuit
• ADC in the HPPASS for reading data from analog sensors
• ADC in the HPPASS for reading the analog feedback, such as voltage and currents from the motor inverter

and PFC circuit
• CORDIC peripheral to do the mathematical operations used in motor control application
• LPCOMP to compare the analog signals for protection
• Inbuilt security features for firmware protection
• Serial communication blocks (SCBs) to interface with external devices like motion sensors
• Programmable Smart I/O to implement CPU independent simple logical operations on internal/external

inputs
• CAN FD channels to communicate with CAN FD capable peripherals

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
1 Introduction

Application note 10 002-38329 Rev. *A
2024-12-03

2 PSOC™ Control C3 resources
A wealth of technical resources is available to develop applications with the PSOC™ Control C3 MCU. These
resources are listed below.
• Overview: PSOC™ Control C3 MCU webpage
• Product selectors: PSOC™ Control C3 MCU
• Entry line datasheet and main line datasheet describes each device family and provides electrical

specifications
• Application notes and code examples cover a broad range of topics, from basic to advanced level. You can

also browse our collection of code examples
• Reference manuals (architecture and register) provide detailed descriptions of the architecture and

registers in each device family
• Development tools: Many low-cost kits are available for evaluation, design, and development of different

applications using PSOC™ Control C3 MCUs
• Training videos: Video training on our products and tools, including PSOC™ Control C3 MCU
• Technical support: PSOC™ Control C3 MCU community forum

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
2 PSOC™ Control C3 resources

Application note 11 002-38329 Rev. *A
2024-12-03

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-control-arm-cortex-m33-mcu/

3 PSOC™ Control C3 MCU development kits
Infineon provides a wide variety of hardware development kits in various form factors and features to enable
easy and rapid evaluation and prototyping of PSOC™ Control C3 based applications.
The following table lists the PSOC™ Control C3 kits with various features.
ModusToolbox™ software is the software development platform for creating embedded applications using the
development kits.

Table 2 Development kits

Kit MPN Product Kit name BSP GitHub repo

KIT_PSC3M5_EVK PSC3M5xD PSOC™ Control C3M5 Evaluation Kit BSP

KIT_PSC3M5_MC1 PSC3M5xD PSOC™ Control C3M5 Complete System Motor
Control Kit

BSP

KIT_PSC3M5_CC2 PSC3M5xD PSOC™ Control C3M5 Motor Drive Control Card BSP

KIT_PSC3M5_DP1 PSC3M5xD PSOC™ Control C3M5 Complete System Dual Buck
Evaluation Kit

BSP

KIT_PSC3M5_CC1 PSC3M5xD PSOC™ Control C3M5 Digital Power Control Card BSP

For the complete list of kits for the PSOC™ Control C3 MCU along with the shield modules, see the
PSOC™ Control C3 MCU webpage.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
3 PSOC™ Control C3 MCU development kits

Application note 12 002-38329 Rev. *A
2024-12-03

https://github.com/Infineon/TARGET_KIT_PSC3M5_EVK
https://github.com/Infineon/TARGET_KIT_PSC3M5_CC2
https://github.com/Infineon/TARGET_KIT_PSC3M5_CC2
https://github.com/Infineon/TARGET_KIT_PSC3M5_CC1
https://github.com/Infineon/TARGET_KIT_PSC3M5_CC1
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-control-arm-cortex-m33-mcu/

4 PSOC™ Control C3 ecosystem for firmware/application
development

Infineon provides the ModusToolbox™ software for firmware/application development on PSOC™ Control C3
MCUs. ModusToolbox™ Software is a modern, extensible development ecosystem supporting a wide range of
Infineon microcontroller devices, including PSOC™ Arm® Cortex® Microcontrollers, TRAVEO™ T2G Arm® Cortex®

Microcontroller, XMC™ Industrial Microcontrollers, AIROC™ Wi-Fi devices, AIROC™ Bluetooth® devices, and USB-C
Power Delivery Microcontrollers. This software includes configuration tools, low-level drivers, middleware
libraries, and other packages that enable you to create MCU and wireless applications. All tools run on
Windows, macOS, and Linux. ModusToolbox™ includes an Eclipse IDE, which provides an integrated flow with
all the ModusToolbox™ tools. Other IDEs such as Visual Studio Code, IAR Embedded Workbench and Arm® MDK
(μVision) are also supported.
ModusToolbox™ software supports stand-alone device and middleware configurators. Use the configurators to
set the configuration of different blocks in the device and generate code that can be used in firmware
development.
Libraries and enablement software are available at the GitHub site.
ModusToolbox™ tools and resources can also be used on the command line. See the build system chapter in the
ModusToolbox™ tools package user guide for detailed documentation.

4.1 Installing the ModusToolbox™ tools package
Refer to the ModusToolbox™ tools package installation guide for details.

4.2 Choosing an IDE
ModusToolbox™ software, the latest-generation toolset, is supported across Windows, Linux, and macOS
platforms. ModusToolbox™ software supports 3rd-party IDEs, including the Eclipse IDE, Visual Studio Code, Arm®

MDK (μVision), and IAR Embedded Workbench. The tools package includes an implementation for all the
supported IDEs. The tools support all PSOC™ Control C3 MCUs. The associated BSP and library configurators
also work on all three host operating systems.

Figure 3 ModusToolbox™ environment

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
4 PSOC™ Control C3 ecosystem for firmware/application development

Application note 13 002-38329 Rev. *A
2024-12-03

https://github.com/infineon
https://www.infineon.com/ModusToolboxUserGuide
https://www.Infineon.com/ModusToolboxInstallguide

4.3 ModusToolbox™ help
The ModusToolbox™ ecosystem provides documentation and training. Launch the Eclipse IDE for
ModusToolbox™ software and navigate to the following Help menu items:
Choose Help > ModusToolbox™ General Documentation:
• ModusToolbox™ Documentation Index: Provides brief descriptions and links to various types of

documentation included as part of the ModusToolbox™ software
• ModusToolbox™ Installation Guide: Provides instructions for installing the ModusToolbox™ software
• ModusToolbox™ User Guide: This guide primarily covers the ModusToolbox™ aspects of building,

programming, and debugging applications. Additionally, it covers various aspects of the tools installed
along with the IDE

• ModusToolbox™ Training Material: Links to the training material available at https://github.com/
Infineon/training-modustoolbox

• Release Notes: Describes the features and known limitations for the ModusToolbox™ software, provided as
part of the ModusToolbox™ tools package included with the installer

For documentation on Eclipse IDE for ModusToolbox™, choose Help > Eclipse IDE for ModusToolbox™

documentation.
• User Guide: Provides descriptions about creating applications as well as building, programming, and

debugging them using Eclipse IDE
• Eclipse IDE Survival Guide: This is a link to a forum with answers for questions about how to get common

tasks done

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
4 PSOC™ Control C3 ecosystem for firmware/application development

Application note 14 002-38329 Rev. *A
2024-12-03

5 Getting started with PSOC™ Control C3 MCU design
This section does the following:
• Demonstrate how to build a simple PSOC™ Control C3 MCU-based design and program into the

development kit
• Makes it easy to learn PSOC™ Control C3 MCU design techniques and how to use the ModusToolbox™

software with different IDEs.

5.1 Prerequisites
Before you get started with the application development instructions, make sure that you have the appropriate
development kit for your PSOC™ Control C3 MCU product line and have installed the required software. You also
need internet to access the GitHub repositories during project creation.

5.1.1 Hardware
The following design example is developed for the PSOC™ Control C3M5 Evaluation Kit (KIT_PSC3M5_EVK).
However, you can build the application for other development kits also. For more details, see the section
Application development instructions.

5.1.2 Software
ModusToolbox™ software 3.3 or above.
After installing the software, see the ModusToolbox™ tools package user guide to get an overview of the
software.

5.2 Application development instructions
These instructions are grouped into several sections. Each section is dedicated to a phase of the application
development workflow. The major sections are:
1. Create a new application
2. View and modify the design
3. Write firmware
4. Build the application
5. Program the device
6. Test your design
This design is developed for the PSOC™ Control C3M5 Evaluation Kit. You can use other supported kits to test
this example by selecting the appropriate kit while creating the application.

5.3 About the design
This design uses the PSOC™ Control C3 MCU to execute two tasks: UART communication and LED control.
After device reset, the CPU uses the UART to print a "Hello World" message to the serial port stream and starts
blinking the user LED on the kit. When you press the 'Enter' key on the serial console, the blinking of the LED is
paused or resumed.

5.4 Create a new application
This section takes you on a step-by-step guided tour of the new application creation process. It uses the Empty
App starter application and manually adds the functionality from the Hello World starter application.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 15 002-38329 Rev. *A
2024-12-03

https://www.infineon.com/KIT_PSC3M5_EVK
https://www.infineon.com/modustoolbox
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/KIT_PSC3M5_EVK

As mentioned in section Choosing an IDE, ModusToolbox™ software supports the following third-party IDEs:
1. Eclipse IDE
2. Visual Studio Code (VS Code)
3. IAR Embedded Workbench
4. Keil µvision
The following sections provide details on how to create a new application on different IDEs.

5.4.1 Eclipse IDE for ModusToolbox™

If you are familiar with developing projects with ModusToolbox™ software, you can use the Hello World starter
application directly. It is a complete design, with all the firmware written for the supported kits. You can walk
through the instructions and observe how the steps are implemented in the code example.
If you start from scratch and follow all the instructions in this application note, you can use the Hello World
code example as a reference while following the instructions.
Launch the Dashboard 3.3 application to get started.
Note: Dashboard 3.3 application needs access to the internet to successfully clone the starter application

onto your machine.

The Dashboard 3.3 application helps you get started using the various tools with easy access to documentation
and training material, a simple path for creating applications and creating and editing BSPs.
1. Open the Dashboard 3.3 application.

To open the Dashboard 3.3 application, do one of these:

• Windows: Navigate to [ModusToolbox installation path]/tools_3.3/dashboard/dashboard.exe or
you can also select the "ModusToolbox™ Dashboard 3.3" item from the Windows Start menu.

• Linux: [ModusToolbox installation path]/tools_3.3/dashboard and run the executable
• macOS: Run the "dashboard" app

2. On the Dashboard 3.3 window, in the right pane, in the Target IDE drop-down list, select Eclipse IDE for
ModusToolbox™, and click Launch Eclipse IDE for ModusToolbox™.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 16 002-38329 Rev. *A
2024-12-03

Figure 4 Dashboard 3.3 application
3. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox™ displays a dialog to choose a directory for use as the
workspace directory. The workspace directory is used to store workspace preferences and development
artifacts. You can choose an existing empty directory by clicking the Browse button, as shown in the
following figure. Alternatively, you can type in a directory name to be used as the workspace directory
along with the complete path, and the IDE will create the directory for you.

Figure 5 Select a directory as the workspace

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 17 002-38329 Rev. *A
2024-12-03

4. Create a new ModusToolbox™ application.
a. Click New Application in the Start group of the Quick Panel.
b. Alternatively, you can choose File > New > ModusToolbox™ Application, as Figure 6 shows.

Displays the Eclipse IDE for ModusToolbox™ Application window.

A

B

Figure 6 Create a New ModusToolbox™ Application
5. Select a target PSOC™ Control C3M5 Evaluation Kit.

ModusToolbox™ speeds up the development process by providing BSPs that set various workspace/
project options for the specified development kit in the new application dialog.

a. In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. The
steps that are followed use KIT_PSC3M5_EVK, as shown in Figure 7.

b. Click Next.

A

B

Figure 7 Choose target hardware

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 18 002-38329 Rev. *A
2024-12-03

c. In the Select Application dialog, select Empty App starter application, as shown in the following
figure.

d. In the Name field, type in a name for the application, such as Hello_World. You can choose to
leave the default name if you prefer.

Note: Try to use a short name without spaces in between.

e. Click Create to create the application, as shown in the following figure, wait for the Project
Creator to automatically close once the project is successfully created.

C D

E

Figure 8 Choose starter application
You have successfully created a new ModusToolbox™ application for a PSOC™ Control C3 MCU.
The BSP uses PSC3M5FDS2AFQ1 as the default device that is mounted on the PSOC™ Control C3M5 Evaluation
Kit.
If you are using custom hardware based on the PSOC™ Control C3 MCU or a different PSOC™ Control C3 MCU
part number, see the "Creating your Own BSP" section in the ModusToolbox™ user guide.

5.4.1.1 View and modify the design
Figure 9 shows the ModusToolbox™ project explorer interface displaying the structure of the application project.
PSOC™ Control C3 MCU has one CM33 core. This application note shows the firmware development using the
CM33 core with ModusToolbox™.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 19 002-38329 Rev. *A
2024-12-03

https://www.infineon.com/ModusToolboxUserGuide

1

6

2

3

4

5

Figure 9 Project Explorer view

A project folder consists of various subfolders – each denoting a specific aspect of the project.
1. The files provided by the BSP are in the bsps folder and are listed under TARGET_<bsp name> subfolders.

All the input files for the device and peripheral configurators are in the config folder inside the BSP.
The GeneratedSource folder in the BSP contains the files that are generated by the configurators and
are prefixed with cycfg_. These files contain the design configuration as defined by the BSP. From
ModusToolbox™ 3.x or later, you can directly customize configurator files of BSP for your application
rather than overriding the default design configurator files with custom design configurator files since
BSPs are completely owned by the application.
The BSP folder also contains the linker scripts and the start-up code for the PSOC™ Control C3 MCU used
on the board.

2. The build folder contains all the artifacts resulting from a build of the project. The output files are
organized by target BSPs.

3. The deps folder contains .mtb files, which provide the locations from which ModusToolbox™ pulls the
libraries that are directly referenced by the application. These files typically each contain the GitHub
location of a library. The .mtb files also contain a git Commit Hash or Tag that tells which version of the
library is to be fetched and a path as to where the library should be stored locally.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 20 002-38329 Rev. *A
2024-12-03

For example, here, retarget-io.mtb points to mtb://retarget-io#latest-v1.X#$$ASSET_REPO$$/retarget-
io/latest-v1.X. The variable $$ASSET_REPO$$ points to the root of the shared location which defaults
to mtb_shared. If the library must be local to the application instead of shared, use $$LOCAL$$ instead of
$$ASSET_REPO$$.

4. The libs folder also contains .mtb files. In this case, they point to libraries that are included indirectly
as a dependency of a BSP or another library. For each indirect dependency, the Library Manager places
a .mtb file in this folder. These files have been populated based on the targets available in deps folder.
For example, using BSP KIT_PSC3M5_EVK populates the libs folder with the following .mtb files:
cmsis.mtb, core-lib.mtb, core-make.mtb, deivce-db.mtb, mtb-hal-psc3.mtb, mtb-pdl-cat1.mtb, receipe-
make-cat1b.
The libs folder contains the file mtb.mk, which stores the relative paths of all the libraries required by the
application. The build system uses this file to find all the libraries required by the application.
Everything in the libs folder is generated by the Library Manager so you should not manually edit
anything in that folder.

5. An application contains a Makefile which is at the application's root folder. This file contains the set of
directives that the make tool uses to compile and link the application project. There can be more than
one project in an application. In that case there is a Makefile at the application level and one inside each
project.

6. By default, when creating a new application or adding a library to an existing application and specifying
it as shared, all libraries are placed in an mtb_shared directory adjacent to the application directories.
The mtb_shared folder is shared between different applications within a workspace. Different
applications may use different versions of shared libraries if necessary.

5.4.1.1.1 Open the Device Configurator
BSP configurator files are in the bsps/TARGET_<BSP-name>/config folder. Click <Application-name> from Project
Explorer then click Device Configurator link in the Quick Panel to open the file design.modus in the Device
Configurator as shown in the following figure. You can also open other configuration files in their respective
configurators or click the corresponding links in the Quick Panel.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 21 002-38329 Rev. *A
2024-12-03

https://github.com/Infineon/cmsis
https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/core-make
https://github.com/Infineon/device-db
https://github.com/Infineon/mtb-hal-psc3
https://github.com/Infineon/mtb-pdl-cat1
https://github.com/Infineon/recipe-make-cat1b
https://github.com/Infineon/recipe-make-cat1b

Resources Categories Pane

List of resources

Parameters Pane

Code Preview

Notices Pane

Figure 10 Device Configurator-UART configuration

The Device Configurator provides a set of Resources Categories tabs. Here you can choose between different
resources available in the device such as peripherals, pins, and clocks from the List of Resources.
You can choose how a resource behaves by choosing a Personality for the resource. For example, a serial
communication block (SCB) resource can have EZI2C, I2C, SPI, or UART personalities. The Name(s) is your
name for the resource, which is used in firmware development. One or more aliases can be specified by using a
comma to separate them (with no spaces).
The Parameters pane is where you enter the configuration parameters for each enabled resource and the
selected personality. The Code Preview pane shows the configuration code generated per the configuration

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 22 002-38329 Rev. *A
2024-12-03

parameters selected. This code is populated in the cycfg_ files in the GeneratedSource folder. The Parameters
pane and Code Preview pane may be displayed as tabs instead of separate windows but the contents will be
the same.
Any errors, warnings, and information messages arising out of the configuration are displayed in the Notices
pane. Configuring the peripheral is required for both PDL and HAL based implementations to work.
Figure 10 also shows that the SCB 3 is enabled and configured. As the SCB 3 is used for communicating with the
user through the debug UART terminal, replicate the same configuration in your setup for the Hello World
application.

Resources categories Pane

List of resources

Parameters pane

Code preview

Notices pane

Figure 11 Device Configurator - Timer configuration

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 23 002-38329 Rev. *A
2024-12-03

Figure 11 shows that the timer TCPWM[0] Group[0] 16 bit Counter 0 is configured in Timer - Counter mode.
This configuration is used in the code to generate interrupts for LED toggling. Make the same configuration in
your setup. To make the LED toggle every second, the input clock frequency is set to 1 MHz. Ensure that this
configuration is also made in your setup.
In the Hello World application, you are using a GPIO connected to the LED on the EVK. To use the GPIO, enable
the pin P8.5 in the Pins tab in the resource categories pane. Also, make sure that the Drive Mode is set to
‘Strong Drive. Input buffer off’.
As the Hello World application that you are now developing, is going to be a secure application, ensure that the
‘Secure attribute’ of all pins selected is set as ‘Secure access(0)’.
The application project contains source files that help you create an application for the CM33 core (for example,
main.c). This C file is compiled and linked with the CM33 image as part of the normal build process.
At this point in the development process, the required middleware is ready to be added to the design. The only
middleware required for the Hello World application is the retarget-io library.

5.4.1.1.2 Add retarget-io middleware
In this section, you will add the retarget-io middleware to redirect standard input and output streams to the
UART configured by the BSP. The initialization of the middleware will be done in main.c file.
1. In the Quick Panel, click the Library Manager link.
2. In the subsequent dialog, click Add Libraries.
3. Under Peripherals, select and enable retarget-io.
4. Click OK and then Update.
The files necessary to use the retarget-io middleware are added in the mtb_shared > retarget_io folder, and
the .mtb file is added to the deps folder, as shown in the following figure.

1

2

3

4

4

Figure 12 Add the retarget-io middleware

5.4.1.2 Write firmware
At this point in the development process, you have created an application with the assistance of an application
template, configured the peripherals using the device configurator, and modified it to add the retarget-io
middleware. In this section, you will write the firmware that implements the design functionality.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 24 002-38329 Rev. *A
2024-12-03

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

If you are working from scratch using the Empty PSOC™ Control C3 starter application, you can copy the code
snippet provided in this section to the main.c file of the application project. If you are using the Hello World
code example, all the required files are already in the application.

Firmware flow

Examine the code in the main.c file of the application. Figure 13 shows the firmware flowchart.
After reset, resource initialization for this example is performed by the CM33 CPU. It configures the system
clocks, pins, clock to peripheral connections, and other platform resources.
Then the clocks and system resources are initialized by the BSP initialization function. The retarget-io
middleware is configured to use the debug UART, and the user LED is initialized. The debug UART prints a “Hello
World!” message on the terminal emulator – the onboard KitProg3 acts as the USB-to-UART bridge to create the
virtual COM port. A timer object is configured to generate an interrupt every 1000 milliseconds. At each timer
interrupt, the CM33 CPU toggles the LED state on the kit.
The firmware is designed to accept the 'Enter' key as an input, and on every press of the 'Enter' key, the
firmware starts or stops the blinking of the LED.
Note that this application code uses BSP/HAL/middleware functions to execute the intended functionality.
cybsp_init() – This BSP function initializes all the system resources of the device, including but not limited to
the system clocks and power regulators.
Cy_SCB_UART_Init() – This function initializes the debug UART.
mtb_hal_uart_setup() and cy_retarget_io_init() – These functions set up the HAL UART and redirect the input/
output stream to the debug UART.
mtb_hal_uart_get() – The while loop calls this function to detect the pressing of the 'Enter Key', which start or
stop the LED toggling.
timer_init() – This function wraps a set of timer function calls to instantiate and configure a hardware timer. It
also sets up a callback for the timer interrupt.
isr_timer() – This is the timer ISR getting executed in every 1000 milliseconds. This function sets a flag for
toggling the LED.
The flag set by the timer ISR is checked in the main loop, and the LED is toggled based on it.
Copy the following code snippet to the main.c file of your application project.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 25 002-38329 Rev. *A
2024-12-03

Code listing 1: main.c file

/***
* Header Files
***/
#include "cy_pdl.h"
#include "cybsp.h"
#include "cy_retarget_io.h"
#include "mtb_hal.h"

/***
* Macros
***/

/***
* Global Variables
***/
const cy_stc_sysint_t intrCfg1 =
{
 .intrSrc = TCPWM_COUNTER_IRQ,
 .intrPriority = 7u
};

volatile bool timer_interrupt_flag = false;
bool led_blink_active_flag = true;

/* Variable for storing character read from terminal */
uint8_t uart_read_value;

/* For the Retarget -IO (Debug UART) usage */
static cy_stc_scb_uart_context_t DEBUG_UART_context;
static mtb_hal_uart_t DEBUG_UART_hal_obj;

/***
* Function Prototypes
***/
void timer_init(void);
void isr_timer(void);

/***
* Function Definitions
***/

/***
* Function Name: main
**
* Summary:
* This is the main function. It sets up a timer to trigger a periodic interrupt.
* The main while loop checks for the status of a flag set by the interrupt and
* toggles an LED at 1Hz to create an LED blinky. Will be achieving the 1Hz Blink
* rate. The while loop also checks whether the 'Enter' key was pressed and
* stops/restarts LED blinking.
*

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 26 002-38329 Rev. *A
2024-12-03

* Parameters:
* void
*
* Return:
* int
*
***/
int main(void)
{
 cy_rslt_t result;

 /* Initialize the device and board peripherals */
 result = cybsp_init();

 /* Board init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Enable global interrupts */
 __enable_irq();

 /* Debug UART init */
 result = (cy_rslt_t)Cy_SCB_UART_Init(DEBUG_UART_HW, &DEBUG_UART_config,
&DEBUG_UART_context);

 /* UART init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 Cy_SCB_UART_Enable(DEBUG_UART_HW);

 /* Setup the HAL UART */
 result = mtb_hal_uart_setup(&DEBUG_UART_hal_obj, &DEBUG_UART_hal_config,
&DEBUG_UART_context, NULL);

 /* HAL UART init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 result = cy_retarget_io_init(&DEBUG_UART_hal_obj);

 /* HAL retarget_io init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 27 002-38329 Rev. *A
2024-12-03

 /* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
 printf("\x1b[2J\x1b[;H");

 printf("****************** "
 "PDL: Hello World! Example "
 "****************** \r\n\n");

 printf("Hello World!!!\r\n\n");
 printf("For more projects, "
 "visit our code examples repositories:\r\n\n");

 printf("https://github.com/Infineon/"
 "Code-Examples-for-ModusToolbox-Software\r\n\n");

 /* Initialize timer to toggle the LED */
 timer_init();

 printf("Press 'Enter' key to pause or "
 "resume blinking the user LED \r\n\r\n");

 for (;;)
 {
 /* Check if 'Enter' key was pressed */
 if (mtb_hal_uart_get(&DEBUG_UART_hal_obj, &uart_read_value, 1) == CY_RSLT_SUCCESS)
 {

 if (uart_read_value == '\r')
 {
 /* Pause LED blinking by stopping the timer */
 if (led_blink_active_flag)
 {
 Cy_TCPWM_TriggerStopOrKill_Single(TCPWM_COUNTER_HW,
TCPWM_COUNTER_NUM);

 printf("LED blinking paused \r\n");
 }
 else /* Resume LED blinking by starting the timer */
 {
 Cy_TCPWM_TriggerStart_Single(TCPWM_COUNTER_HW, TCPWM_COUNTER_NUM);

 printf("LED blinking resumed\r\n");
 }

 /* Move cursor to previous line */
 printf("\x1b[1F");

 led_blink_active_flag ^= 1;
 }
 }

 /* Check if timer elapsed (interrupt fired) and toggle the LED */
 if (timer_interrupt_flag)
 {

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 28 002-38329 Rev. *A
2024-12-03

 /* Clear the flag */
 timer_interrupt_flag = false;

 /* Invert the USER LED state */
 Cy_GPIO_Inv(CYBSP_USER_LED_PORT, CYBSP_USER_LED_PIN);
 }
 }
}

/***
 * Function Name: timer_init
 **
 * Summary:
 * This function creates and configures a Timer object. The timer ticks
 * continuously and produces a periodic interrupt on every terminal count
 * event. The period is defined by the 'period' and 'compare_value' of the
 * timer configuration structure 'led_blink_timer_cfg'. Without any changes,
 * this application is designed to produce an interrupt every 1 second.
 *
 * Parameters:
 * none
 *
 ***/
void timer_init(void)
{
 /* Enable interrupts */
 __enable_irq();

 /*TCPWM Counter Mode initial*/
 if (CY_TCPWM_SUCCESS != Cy_TCPWM_Counter_Init(TCPWM_COUNTER_HW, TCPWM_COUNTER_NUM,
&TCPWM_COUNTER_config))
 {
 CY_ASSERT(0);
 }

 /* Enable the initialized counter */
 Cy_TCPWM_Counter_Enable(TCPWM_COUNTER_HW, TCPWM_COUNTER_NUM);

 /* Configure GPIO interrupt */
 Cy_TCPWM_SetInterruptMask(TCPWM_COUNTER_HW, TCPWM_COUNTER_NUM, CY_GPIO_INTR_EN_MASK);

 /* Configure CM4+ CPU GPIO interrupt vector for Port 0 */
 Cy_SysInt_Init(&intrCfg1, isr_timer);
 NVIC_EnableIRQ(TCPWM_COUNTER_IRQ);

 /* Start the counter */
 Cy_TCPWM_TriggerStart_Single(TCPWM_COUNTER_HW, TCPWM_COUNTER_NUM);
}

/***
 * Function Name: isr_timer
 **
 * Summary:

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 29 002-38329 Rev. *A
2024-12-03

 * This is the interrupt handler function for the timer interrupt.
 *
 * Parameters:
 * none
 *
 ***/
void isr_timer(void)
{

 uint32_t interrupts = Cy_TCPWM_GetInterruptStatusMasked(TCPWM_COUNTER_HW,
TCPWM_COUNTER_NUM);

 /* Clear the interrupt */
 Cy_TCPWM_ClearInterrupt(TCPWM_COUNTER_HW, TCPWM_COUNTER_NUM, interrupts);

 if (0UL != (CY_TCPWM_INT_ON_TC & interrupts))
 {
 /* Set the interrupt flag and process it from the main while(1) loop */
 timer_interrupt_flag = true;
 }
}
/* [] END OF FILE */

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 30 002-38329 Rev. *A
2024-12-03

START

Initialize retarget-io to use
BSP’s debug UART

Initialize clocks and
system resources

Print the message
“Hello World”

on to UART terminal

Is “Enter” key
pressed?

No

On timer Interrupt

Set the timer interrupt flag

Exit Interrupt
Handler

Is timer interrupt
flag set?

Clear timer interrupt flag
&

Toggle LED state

Start the timer

Initialize the user LED

Yes

Initialize and start the
timer, register callback –

LED starts blinking

Was LED
blinking earlier?

Stop the timer

Yes

Yes

No

No

Figure 13 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source
files for a deeper understanding.

5.4.1.3 Build the application
This section shows how to build the application.
1. Select the application project in the Project Explorer view.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 31 002-38329 Rev. *A
2024-12-03

2. Click Build Project shortcut under the Hello_World group in the Quick Panel.
It selects the build configuration from the Makefile and compiles/links all projects that constitute the
application. By default, Debug configurations are selected.

3. The Console view lists the results of the build operation, as Figure 14 shows.

1

2

3

Figure 14 Build the application

If you encounter errors, revisit earlier steps to ensure that you completed all the required tasks.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 32 002-38329 Rev. *A
2024-12-03

Note: You can also use the command-line interface (CLI) to build the application. See the Build system
section in the ModusToolbox™ tools package user guide. This document is located in the /
docs_<version>/ folder in the ModusToolbox™ installation.

5.4.1.4 Program the device
This section shows how to program the PSOC™ Control C3 MCU.
ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on PSOC™ Control
C3 MCUs on the evaluation kit.
As the evaluation kit is with a built-in programmer, connect the board to your computer using the provided USB
cable.
If you are developing on your own hardware, you may need a hardware programmer/debugger, for example, a
J-Link, or ULinkpro, or MiniProg.
1. Program the application.

a. Connect to the board and perform the following.
b. Select the application project and click on the Hello_World Program (KitProg3_MiniProg4)

shortcut under the Launches group in the Quick Panel, as Figure 15 shows. The IDE will select and
run the appropriate run configuration. Note that this step will also perform a build if any files have
been modified since the last build.

Figure 15 Programming an application to a device
The Console view lists the results of the programming operation, as Figure 16 shows.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 33 002-38329 Rev. *A
2024-12-03

https://www.infineon.com/ModusToolboxUserGuide
https://openocd.org/
https://www.segger.com/products/debug-probes/j-link/
https://www.keil.com/arm/ulinkpro/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005-a/

Figure 16 Console – programming results

5.4.1.5 Test your design
This section describes how to test your design.
Follow these steps to observe the output of your design. This note uses Tera Term as the UART terminal
emulator to view the results, but you can use any terminal of your choice to view the output.
1. Select the serial port

Launch Tera Term and select the USB-UART COM port as Figure 17 shows. Note that your COM port
number may be different.

Figure 17 Selecting the KitProg3 COM port in Tera Term
2. Set the baud rate

Set the baud rate to 115200 under Setup > Serial port as Figure 18 shows.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 34 002-38329 Rev. *A
2024-12-03

Figure 18 Configuring the baud rate in Tera Term
3. Reset the device

Press the reset switch (SW1) on the kit. The message shown in Figure 19 appears on the terminal. The
user LED on the kit will start blinking.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 35 002-38329 Rev. *A
2024-12-03

Figure 19 Printed UART message
4. Pause/resume LED blinking functionality

Press the Enter key to pause/resume blinking the LED. When the LED blinking is paused, a
corresponding message will be displayed on the terminal as shown in Figure 20.

Figure 20 Printed UART message

5.4.1.6 Debugging the application using KitProg3/MiniProg4
PSOC™ Control C3 kits come with either the KitProg3 or J-Link onboard programmer/debugger. See the
KitProg3 user guide for details of KitProg3 or see the J-Link user guide for the details of J-Link.
The Eclipse IDE contains several launch configurations that control various settings for programming the
devices and launching the debugger. Depending on the kit and the type of applications you are using, there are
various launch configurations available. One such configuration is the KitProg3/MiniProg4 launch
configuration. Refer to the "PSOC™ MCU programming/debugging" section in the Eclipse IDE for
ModusToolbox™ user guide for more details on the launch configurations.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 36 002-38329 Rev. *A
2024-12-03

https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v17_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853
https://wiki.segger.com/UM08001_J-Link_/_J-Trace_User_Guide
https://www.Infineon.com/MTBEclipseIDEUserguide
https://www.Infineon.com/MTBEclipseIDEUserguide

When an application is created, the tool generates the launch configurations for KitProg3_MiniProg4 or J-link
under Launches in the Quick Panel. For the PSOC™ Control C3 Evaluation Kit, it will generate launch
configurations for KitProg3, as shown in the following figure.

Figure 21 KitProg3/MiniProg4 launch configuration

Connect the device to the host machine and click on the Hello_World Debug (KitProg3_MiniProg4) launch to
start debugging, as shown in Figure 21. Once the debugging starts, the execution halts at the main() function,
and the user can start debugging from the start of main(), as shown in the following figure.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 37 002-38329 Rev. *A
2024-12-03

Figure 22 Debug main()

5.4.2 Visual Studio Code (VS Code) for ModusToolbox™

Refer to the Visual Studio Code for ModusToolbox™ user guide for creating a new application on VS Code.

5.4.3 IAR Embedded Workbench for ModusToolbox™

Refer to the IAR Embedded Workbench for ModusToolbox™ user guide for creating a new application on IAR.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 38 002-38329 Rev. *A
2024-12-03

https://www.Infineon.com/MTBVSCodeUserGuide
https://www.Infineon.com/MTBIARUserGuide

5.4.4 Keil µVision for ModusToolbox™

Refer to the Keil µVision for ModusToolbox™ user guide for creating a new application on Keil uVision.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
5 Getting started with PSOC™ Control C3 MCU design

Application note 39 002-38329 Rev. *A
2024-12-03

https://www.Infineon.com/MTBuVisionUserGuide

6 Summary
This application note explored the PSOC™ Control C3 MCU device architecture and the associated development
tools. PSOC™ Control C3 MCU is a truly programmable embedded system-on-chip with configurable analog and
digital peripheral functions, memory, and a powerful processor on a chip. The integrated features and low-
power modes make PSOC™ Control C3 MCU an ideal choice for industrial drives, smart appliances, power stage
converters, and other related applications.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
6 Summary

Application note 40 002-38329 Rev. *A
2024-12-03

References
For a complete and up-to-date list of PSOC™ Control C3 MCU code examples, visit Infineon GitHub page. For
additional PSOC™ Control C3 MCU-related documents, visit PSOC™ Control C3 MCU product webpage.

Table 3 General and system-level application notes

Document Document name
AN239527 PSOC™ Control C3 MCU hardware design guide

Table 4 Other documents related to PSOC™ Control C3 MCU

Document Document name
Motor control and power conversion
AN239646 PMSM FOC using PSOC™ Control C3 MCU

AN239961 Synchronous buck converter with PSOC™ Control C3 MCU

Kit user guides
002-39385 KIT_PSC3M5_EVK PSOC™ Control C3M5 Evaluation Kit guide

002-39715 KIT_PSC3M5_CC1 PSOC™ Control C3M5 Digital Power Control Card user
guide

002-39714 KIT_PSC3M5_DP1 PSOC™ Control C3M5 Complete System Dual Buck
Evaluation Kit user guide

002-39971 KIT_PSC3M5_CC2 PSOC™ Control C3 Motor Control Evaluation Kit guide

002-40071 KIT_PSC3M5_MC1 PSOC™ Control C3 Motor Control Evaluation Kit guide

Security
AN240106 Getting started with PSOC™ Control C3 security

Table 5 ModusToolbox™

ModusToolbox™ tools package installation guide

ModusToolbox™ tools package release notes

ModusToolbox™ tools package quick start guide

ModusToolbox™ tools package user guide

Eclipse IDE for ModusToolbox™ user guide

Visual Studio Code for ModusToolbox™ user guide

Keil µVision for ModusToolbox™ user guide

IAR Embedded Workbench for ModusToolbox™ user guide

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
References

Application note 41 002-38329 Rev. *A
2024-12-03

https://github.com/Infineon
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/32-bit-psoc-control-arm-cortex-m33-mcu/
https://www.Infineon.com/ModusToolboxInstallguide
https://www.Infineon.com/ModusToolboxReleaseNotes
https://www.Infineon.com/ModusToolboxQSG
https://www.Infineon.com/ModusToolboxUserguide
https://www.Infineon.com/MTBEclipseIDEUserguide
https://www.Infineon.com/MTBVSCodeUserGuide
https://www.Infineon.com/MTBuVisionUserGuide
https://www.Infineon.com/MTBIARUserGuide

Glossary
This section lists the most commonly used terms that you might encounter while working with PSOC™ family of
devices.
• Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other

functions. The board support package is a set of libraries that provide firmware APIs to initialize the board
and provide access to board level peripherals.

• KitProg: The KitProg is an onboard programmer/debugger with USB-I2C and USB-to-UART bridge
functionality. The KitProg is integrated onto most PSOC™ development kits.

• MiniProg3/MiniProg4: Programming hardware for development that is used to program PSOC™ devices on
your custom board or PSOC™ development kits that do not support a built-in programmer.

• Personality: A personality expresses the configurability of a resource for a functionality. For example, the
SCB resource can be configured to be an UART, SPI, or I2C personalities.

• Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application.
Some middleware may provide network protocols (e.g., CAN FD), and some may provide high-level
software interfaces to device features (e.g., TCPWM, HPPASS).

• ModusToolbox™: An Eclipse-based embedded design platform for embedded systems designers that
provides a single, coherent, and familiar design experience, combining the industry’s most deployed Wi-Fi
and Bluetooth® technologies, and the lowest power, most flexible MCUs with best-in-class sensing.

• Peripheral driver library (PDL): The PDL simplifies software development for the PSOC™ Control C3 MCU
architecture. The PDL reduces the need to understand register usage and bit structures, so easing software
development for the extensive set of peripherals available.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
Glossary

Application note 42 002-38329 Rev. *A
2024-12-03

https://github.com/infineon?q=TARGET+NOT+Deprecated
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-002/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/
https://github.com/Infineon/modustoolbox-software#mcu-middleware-libraries
https://www.infineon.com/modustoolbox
https://github.com/Infineon/mtb-pdl-cat1

Revision history
Document
revision

Date Description of changes

** 2024-05-22 Initial release

*A 2024-12-03 Updated the content structure
Updated figures and sections
Added new sections

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
Revision history

Application note 43 002-38329 Rev. *A
2024-12-03

Trademarks
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.

Getting started with PSOC™ Control C3 MCU on ModusToolbox™

software
Trademarks

Application note 44 002-38329 Rev. *A
2024-12-03

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-12-03
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-leg1689735727843

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Architecture and product lines
	1.2 PSOC™⁠ Control C3 features
	1.3 Target applications

	2 PSOC™⁠ Control C3 resources
	3 PSOC™ ⁠Control⁠ C3 ⁠MCU development kits
	4 PSOC™⁠ Control C3 ecosystem for firmware/application development
	4.1 Installing the ModusToolbox™ tools package
	4.2 Choosing an IDE
	4.3 ModusToolbox™ help

	5 Getting started with PSOC™ ⁠Control⁠ C3 ⁠MCU design
	5.1 Prerequisites
	5.1.1 Hardware
	5.1.2 Software

	5.2 Application development instructions
	5.3 About the design
	5.4 Create a new application
	5.4.1 Eclipse IDE for ModusToolbox™
	5.4.1.1 View and modify the design
	5.4.1.1.1 Open the Device Configurator
	5.4.1.1.2 Add retarget-io middleware

	5.4.1.2 Write firmware
	5.4.1.3 Build the application
	5.4.1.4 Program the device
	5.4.1.5 Test your design
	5.4.1.6 Debugging the application using KitProg3/MiniProg4

	5.4.2 Visual Studio Code (VS Code) for ModusToolbox™
	5.4.3 IAR Embedded Workbench for ModusToolbox™
	5.4.4 Keil µVision for ModusToolbox™

	6 Summary
	References
	Glossary
	Revision history
	Trademarks
	Disclaimer

