- ASIC
- 电池管理 IC
- 时钟和时序解决方案
- ESD 和浪涌保护器件
- 评估板
- 高可靠性
- 隔离
- 存储器
- 微控制器
- 功率产品
- 射频
- 安全智能卡解决方案
- 传感器技术
- 小信号晶体管和二极管
- 收发器
- 通用串行总线(USB)
- 无线连接
- 英飞凌大中华区生态圈
- 搜索工具
- 技术
- 封装
- 购买渠道
- 概览
- 嵌入式闪存 IP 解决方案
- Flash+RAM MCP 解决方案
- F-RAM(铁电RAM)
- NOR 闪存
- nvsRAM(非易失性 SRAM)
- PSRAM — 伪静态RAM
- 经过抗辐射强化和高可靠性的存储器
- RRAM 电阻式存储器
- SRAM(静态RAM)
- 晶圆和裸片存储器解决方案
- 概览
- AC-DC电源转换
- 电动汽车动力系统
- D 类音频放大器 IC
- 非接触式电源和检测 IC
- DC-DC 转换器
- 二极管&晶闸管 (Si/SiC)
- 氮化镓(GaN)
- 栅极驱动器 IC
- IGBT 产品及驱动器件
- 智能功率模块(IPM)
- LED 驱动器集成电路
- 电机控制 IC 和驱动
- 功率MOSFET 和 MOS管
- 电源IC
- Infineon 智能功率开关
- 固态继电器
- 无线充电 IC
- 概览
- Calypso® 产品
- CIPURSE™ 产品
- 非接触式存储
- 了解 OPTIGA™ 嵌入式加密解决方案
- SECORA™ 安全解决方案
- 安全控制器
- 智能卡模块
- 政府身份证的智能解决方案
- 概览
- 3D ToF传感器
- MOTIX™ MCU (SoC) 基于 Arm® Cortex®-M0,集成半桥驱动器
- 气体传感器
- 电感式位置传感
- 磁传感器
- 微机电系统麦克风
- 压力传感器
- 雷达传感器
- 概览
- USB 2.0 外设控制器
- USB 3.2 外设控制器
- USB 集线器控制器
- USB PD 高压微控制器
- USB-C AC-DC 和 DC-DC 充电解决方案
- USB-C 充电端口控制器
- USB-C 供电控制器
- 概览
- AIROC™ 车载无线
- AIROC™ 蓝牙Bluetooth® 和多协议解决方案
- AIROC™ 互联微控制器
- AIROC™ Wi-Fi + Bluetooth® 组合
- 概览
- FM0+ 32 位 Arm® Cortex-M0®+ 微控制器 (MCU) 系列
-
FM3 32 位 Arm® Cortex-M3® 微控制器 (MCU) 系列
- 概览
- FM3 CY9AFx1xK 系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9AFx1xL/M/N 系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9AFx2xK/L 系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9AFx3xK/L 系列超低漏电流 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9AFx4xL/M/N 系列低功耗 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9AFx5xM/N/R 系列低功耗 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9AFxAxL/M/N 系列超低漏电流 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9BFx1xN/R 高性能系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9BFx1xS/T 高性能系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9BFx2xJ 系列 Arm® Cortex-M3®微控制器 (MCU)
- FM3 CY9BFx2xK/L/M 系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM3 CY9BFx2xS/T 系列 Arm® Cortex-M3® 微控制器 (MCU)
- FM4 32 位 Arm® Cortex-M4® 微控制器 (MCU) 系列
- 概览
-
TriCore™ AURIX™ TC2xx安全模块
- 概览
- AURIX™系列 – TC21xL
- AURIX™ 系列 – TC21xSC (无线充电)
- AURIX™ 系列 – TC22xL
- AURIX™系列 – TC23xL
- AURIX™ 系列 – TC23xLA (ADAS)
- AURIX 系列 – TC23xLX™
- AURIX™ 系列 – TC264DA (ADAS)
- AURIX™系列 – TC26xD
- AURIX™ 系列 – TC27xT
- AURIX™ 系列 – TC297TA (ADAS)
- AURIX™ 系列 – TC29xT
- AURIX™ 系列 – TC29xTT (ADAS)
- AURIX™系列 – TC29xTX
- AURIX™ TC2xxED (仿真设备)
-
32 位TriCore™ AURIX™ – TC3xx
- 概览
- AURIX™系列 TC32xLP
- AURIX™ 系列 – TC33xDA
- AURIX™系列 - TC33xLP
- AURIX™ 系列 – TC35xTA(ADAS)
- AURIX™ 系列 – TC36xDP
- AURIX™系列 – TC37xTP
- AURIX™ 系列 – TC37xTX
- AURIX™ 系列——TC38xQP
- AURIX™ 系列——TC39xTM
- AURIX™ 系列 – TC39xXA(ADAS)
- AURIX™ 系列 – TC39xXM(ADAS)
- AURIX™ TC39xXX汽车MCU
- AURIX™ 系列 – TC3Ex
- AURIX™ TC37xTE (エミュレーションデバイス)
- AURIX™ TC39xXE(仿真设备)
- 32 位TriCore™ AURIX™ - TC4x
- 概览
- 32 位 PSOC™ 4 Arm® Cortex®-M0/M0+
- 32 位 PSOC™ 4 HV Arm® Cortex-M0®+
- 32 位 PSOC™ 5 LP Arm® Cortex®-M3
- 32 位 PSOC™ 6 Arm® Cortex-M4®/M0+
- 32 位 PSOC™ 汽车多点触控 Arm® Cortex-M0®
- 32 位 PSOC ™控制臂® Cortex ® -M33 MCU
- 32 位 PSOC™ 指纹 Arm® Cortex-M0®+
- 汽车 PSOC™ 4:32 位 Arm® Cortex-M0®/M0+ 微控制器
- PSOC ™ Edge Arm ® Cortex ®多核
- 概览
- 32 位 TRAVEO™ T2G Arm® Cortex®用于车身电子应用
- 用于仪表盘的 32 位 TRAVEO™ T2G Arm® Cortex®
- 概览
- 桥式整流器和交流开关
- CoolSiC™ 肖特基二极管
- 二极管裸片
- 硅二极管
- 晶闸管/二极管模块
- 晶闸管软启动器模块
- 晶闸管/二极管盘
- 概览
- 32-bit PSOC™ Control Arm® Cortex®-M33 MCU
- iMOTION™集成电机控制解决方案
- Embedded Power ICs (System-on-Chip) -146
- MOTIX™电机控制IC用于BLDC电机
- MOTIX™ 电机控制IC,用于有刷直流电机
- MOTIX™ 多半桥IC用于伺服和步进电机
- 概览
- 汽车级MOSFET
- 双 MOSFET
- MOSFET(Si 和 SiC)模块
- N 沟道耗尽型 MOSFET
- N 沟道功率 MOSFET
- P 沟道功率 MOSFET
- 碳化硅 CoolSiC™ MOSFET
- 小信号/小功率 MOSFET
- 概览
- OPTIGA™ Authenticate
- OPTIGA™ Authenticate NFC 解决方案
- OPTIGA™ Connect – 交钥匙式 eSIM 安全解决方案
- OPTIGA™ Trust
- OPTIGA™ 可信平台模块 (TPM)
- 概览
- EZ-PD™ ACG1F 单端口 USB-C 控制器
- EZ-PD™ CCG2 USB Type-C 端口控制器
- EZ-PD™ CCG3PA Automotive USB-C 和 Power Delivery 控制器
- EZ-PD™ CCG4 双端口 USB-C 和 PD
- EZ-PD™ CCG5 双端口和 CCG5C 单端口 USB-C PD 控制器
- EZ-PD™ CCG6 单端口 USB-C & PD 控制器
- EZ-PD ™ CCG6_CFP 和 EZ-PD ™ CCG8_CFP 双单端口 USB-C PD
- EZ-PD™ CCG6DF 双端口和 CCG6SF 单端口 USB-C PD 控制器
- EZ-PD™ CCG7D 汽车双口 USB-C PD + DC-DC 控制器
- EZ-PD™ CCG7S 汽车单口 USB-C PD 解决方案,配备DC-DC控制器
- EZ-PD™ CCG7SAF 车规级单端口 USB-C PD + DC-DC 控制器 + FETs
- EZ-PD™ CCG8 双/单口 USB-C PD
- EZ-PD™ CMG1 USB-C EMCA 控制器
- 支持 EPR 的 EZ-PD™ CMG2 USB-C EMCA 控制器
- 最新动态
- 航空航天和国防
- 智能汽车解决方案
- 消费类电子产品
- Health and lifestyle
- 家用电器
- 工业
- 信息和通信技术
- 可再生能源
- 机器人
- 安全解决方案
- 智能家居和楼宇
- 解决方案
- 概览
- 适配器和充电器
- 适用于智能电视的完整系统解决方案
- 移动设备和智能手机解决方案
- 多旋翼飞机和无人机
- 电动工具
- 家庭娱乐应用的半导体解决方案
- 智能会议系统
- 概览
- 设备身份验证和品牌保护
- 物联网 (IoT) 的嵌入式安全
- eSIM 应用
- 政府身份认证
- 移动安全
- 支付解决方案
- Access control and ticketing
- 概览
- 汽车辅助系统
- 车载网关
- 汽车配电系统
- 车身控制模块 (BCM)
- 舒适便捷电子产品
- 区域 DC-DC 转换器 48 V-12 V
- 区域控制器
- 概览
- 汽车车载主机
- 汽车 USB-C 电源和数据解决方案
- 汽车仪表盘
- 汽车远程信息处理控制单元 (TCU)
- 中央信息显示屏(CID)
- 高性能驾驶舱控制器
- 舱内无线充电
- 智能仪表盘(电动两轮车和三轮车)
- 概览
- 电信基础设施的 AC-DC 电源转换
- 适用于电信基础设施的 DC-DC 电源转换
- 有线和无线通信应用 FPGA
- Satellite communications
- 电力系统可靠性建模
- 用于电信基础设施的射频前端组件
- 最新动态
- 概览
- AIROC™ 软件&工具
- AURIX™应用软件
- Drive Core 用于汽车软件开发
- iMOTION™ 工具和软件
- Infineon智能功率开关和栅极驱动器工具套件
- MOTIX 软件&工具
- OPTIGA™工具和软件
- PSOC™ 软件&工具
- TRAVEO™ 软件&工具
- XENSIV™ 工具和软件
- XMC™ 工具和软件
- 概览
- CIPOS ™ IPM 仿真工具 (PLECS)
- CoolGaN ™仿真工具(PLECS)
- HiRel 拟合率工具
- IGBT仿真工具
- 英飞凌开发者工具
- IPOSIM Online Power Simulation Platform
- InfineonSpice离线仿真工具
- OPTIREG™汽车电源 IC 仿真工具 (PLECS)
- PowerEsim 开关模式电源设计工具
- 解决方案
- XENSIV™磁传感器模拟工具
- 概览
- EZ-PD™ CCGx Dock 软件开发工具包
- FMx Softune IDE
- ModusToolbox™ 软件
- PSOC™ Creator软件
- 雷达开发套件
- 锈
- USB 集线器控制器
- 无线连接蓝牙网状网络辅助应用程序
- XMC™ DAVE™ Software
- 最新动态
- 支持
- 培训
- 英飞凌开发者社区
- 最新消息
商业财经出版社
14/03/2025
商业财经出版社
11/03/2025
商业财经出版社
10/03/2025
商业财经出版社
04/03/2025
- 公司名称
- 我们的故事
- 活动资讯
- 新闻
- 投资者
- 职业生涯
- 质量
- 最新消息
商业财经出版社
14/03/2025
商业财经出版社
11/03/2025
商业财经出版社
10/03/2025
商业财经出版社
04/03/2025
新闻管理员 发表于 2017-04-20
据统计,汽车电子在整车成本中的占比正不断增加,紧凑型车中占了15%、中高档轿车中占约28%、混合动力车中更占到47%、纯电动轿车中则占65%。而正在朝智能化、电子化发展的汽车市场,无疑给整个半导体市场带来了新的活力和新的增长点。
在本文,英飞凌新能源汽车电力电子应用主任工程师何耀华先生一一讲述了功率电子器件在汽车中的发展趋势,可能遇到的挑战,以及英飞凌的应对策略。
功率电子器件在汽车中的发展趋势是怎么样的呢?对此,何耀华提出了以下4点:
一是将来会出现专用的汽车级功率电子器件。他解释说,虽然汽车级认证的电子元器件是车厂默认的准入条件,通过汽车级认证的产品有着更高的可靠性和性能,但是为工业应用设计的通用功率电子器件,已经跟不上日新月异的新能源汽车的发展需求了,设计已经走过初期的“将就用”的阶段,精细化设计已经成为了趋势和必然。
二是平台化设计。典型的汽车电子系统开发耗时2到3年,如果后续有更新的需求,推倒重头开始开发,需要消耗大量开发成本和时间。如果功率电子器件能实现平台化,可以明显降低开发成本和周期。何耀华拿英飞凌的Hybridpack drive家族产品举例说,“针对70Kw~150Kw平台,前期开发可以使用Hybridpack drive pinfin版本的高性能产品,做到90Kw~150Kw,后续如有70Kw~90Kw需求,只需要把功率模块更换为Hybridpack drive flat,无需更改电路和软件。”
三是智能化和功能安全设计。功率电子传统意义上是一个被动的执行器件,接收指令后动作。何耀华认为,将来的趋势是不仅简单的接收指令,还有部分判断和保护功能,“例如在IGBT内部增加电流和温度传感器,当系统可能出故障时,能做初步的判断,可以首先尝试降低车辆输出扭矩和速度,而不是直接关闭。在电池电压偏高,降低功率器件开关速度,保护开关电路安全,在电池电压正常时,做最高效开关动作。”功率器件的智能化,可以让电子控制系统达到更高安全等级。
显然,智能化,电子化为半导体厂商带来巨大机遇的时候,也带来了新的挑战。汽车应用不同于传统工业驱动应用需求,何耀华举例说,“大型水电站的发电机和输配电的电力变换器的最重要特性是高可靠性和高性能,因为单台价值高,数量少,元器件成本稍高也可以接受。但汽车应用作为大规模量产的高端工业消费品,终端客户是个人,需要更好地控制终端售价,因此,对元器件成本提出了更高的要求。”
英飞凌如何应对这些挑战呢?何耀华提到四点:
一是,持续更新产品线,提供更有力的竞争产品。他举例说,在国内广泛应用的针对120Kw到150Kw逆变器用的功率半导体模块Hybridpack2,英飞凌推出的更新版本的产品:HybirdPack drive,通过优化晶圆性能和内部封装设计,在保持输出功率不变的情况下,降低了30%体积,也就是提高了30%的功率密度,因为使用了更少的晶圆和降低了散热器面积,市场竞争力也大幅提升。
二是优化半导体工艺,降低成本。在多数半导体厂家还在用8英寸晶圆来生产IGBT晶片时,英飞凌是业界少数几个采用12寸晶圆的半导体厂家,通过提高晶片切割的利用效率,降低IGBT晶片的成本,12英寸晶圆意味每盘待切割的晶圆数量更多,对良品率的控制要求更高,如何提高生产良品率也是英飞凌核心的竞争力。
三是定制针对汽车应用的IGBT晶圆。之前IGBT晶圆设计主要输入来源是工业应用,例如650V和1200V的IGBT分别针对220V 和380V的交流整流输出。英飞凌针对汽车应用另起炉灶,针对144V的中混,336V到500V的高压强混和纯电动车,推出了400V和750V的晶圆,其中型号为EDT2的晶片,有着业界最高的产品性能,相对之前产品提高了20%的性能,使得更紧凑的设计成为了可能。当然所有晶片都能满足汽车级认证的各项严苛条件。
四是大规模持续供货能力和质量保证。英飞凌在德国瓦尔斯泰因有2条全自动化产线,专门生产针对汽车级的功率电子IGBT模块,能保证足够的产能。全自动化产线,也完全避免了人为错误带来的影响。各种齐全的生产质量控制体系,及出厂产品都经过100%覆盖的测试,将出厂产品的失效率降到最低。
他同时还提到,汽车级设计和认证体系是保证其产品高可靠性的保证。何耀华拿最新的HybridPack drive IGBT模块举例,“该模块从设计概念,到产品从产线生产,经历了3年时间,其中18个月是做可靠性验证研发,可靠性验证研发的主要工作是,用各种极限测试做加速老化验证,例如其中一个测试叫做温度循环测试,需要将IGBT模块从50度在5秒内加热到150度,经历60,000次而不出现寿命衰减,震动测试的标准也从5g提高到了20g,还能在短时间内(11毫秒)承受50g的冲击。同时,在2008年生产的HybridPack1模块,在车辆运行200,000公里后,拆解逆变器后将功率模块送到英飞凌做分析,基本完好无损,能通过出厂测试流程。”
何耀华认为,汽车电子工程师在挑选功率电子器件时,应关注如下技术特性:
首先,无容置疑的是需要选择通过汽车级认证的功率电子器件,从器件选型开始就要保证系统的可靠性;
其次,通过综合的系统设计来优化功率器件的选型和降低成本。例如通过配合系统设计和工况设计,根据车辆运行工况优化控制软件,降低功率器件的需求 ,提高系统性能和降低成本;
三是,电气参数的设计和选型。这需要考虑极限工作状况下电气参数的影响,并通过仿真和实验验证。
最后一点也是最重要的可靠性设计。需要做失效分析和耐久试验。
他的建议是在设计之初就考虑可靠性和寿命,通过仿真和实验验证,而且需要合理设计可靠性参数,应避免过高设计余量带来过高的成本。